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The necessary and sufficient conditions t0 satisfy exactly the coupling 
relation between excess temperatures in an active element of finite dimensions 
under asymmetric cooling conditions are derived. 

In [ I ] ,  
the form 

a relation between excess temperatures in a fuel element was proposed which has 

@(X, Y ) =  O(X*, Y) O(X, Y*), (1)  
0 (X*, Y*) 

where @(X, Y) is the dimensionless (excess) temperature and X*, Y*, X, Y are fixed and 
variable coordinates. 

In [2] on the basis of analyzing experimental data and known solutions of problems of 
heat conduction and the electromagnetic field in the interelectrode gap, it was shown that 
Eq. (I) is not always satisfied to a given accuracy, but only for a strictly defined set of 
thermal, geometric, and other parameters. 

Establishing the necessary and sufficient conditions for satisfying Eq. (I) is stimula- 
ted by the solution of a series of applied problems, especially for those experimental cases 
when it is complicated to measure, for example, the temperature inside an active element. 

THEOREM. Let a function of internal heat sources have the form 

w (x, Y) = w1 (x) w~ (Y), (2)  

where WI(X) and W2(Y) are continuous functions, which satisfy the differential equations 

W~xx = - -  ~W~, W2vv = - -  ~W~, O < X < I, O < F < R, (3 )  

f o r  t h e  boundary  c o n d i t i o n s  

W x  (0, Y) - -  BizW (0, Y) = O; 

Wr (X, O) - -  Bi~W (X, O) = O; 

W x ( t ,  Y) -b BilW (1, Y)=O;  

Wv (X, R) q- Bi3W (X, R) = O, 
(4) 

and ~i are eigenvalues. They are the roots of two transcendental equations 

2 

ctg l~i = 
l~i (Bi ! + Bi~) ' 

I~ - -  BiB Bir 
ctg I~i R = P,i (BiB -k- Bi~) " 

(5) 

(6)  

Then the equation of the temperature field in the fuel element will have the form 

@ (X, R) = i Poo W~ (X) W~ (11). ( 7 ) 
2~L 

Here this function satisfies Eq. (i), Poisson's equation 

@xx + Orr = - -  Po0 W1 (X) W~ (Y) ( 8 ) 

and boundary  c o n d i t i o n s  t h a t  a r e  ana logous  to  Eq. ( 4 ) .  

Proof. The solution of Poisson's equation (8) for the boundary conditions of a solid by 
the method of finite integral transforms [3] has the form 
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TABLE i. Discrete Series of Values of R for a Pres- 
sure Plate of a Turbo Generator for Which Eq. (i) is 
(or is not) Fulfilled with an Error e < 5%. The Ini- 
tial Data from [2, 4]: Bi~ = 0.8, Bi= = 1.6, Bi~ = 
0.4, Bi~ = 1.2; Calculation according to Eq. (5): ~ 
= 1.3827059 (Ax = 1.4.10 -~) 

R A~, 10 -5 I (R) A~ 

0,7206 
2,9927 
5,2647 
7,5368 
9,8088 

--0,53 
--8,1 
+3,9 
--3,7 
+8,3 

2,2720 
2,2725 
4,52 
9,0 
9,1 

~i 1793 
+1648 
--30,6 
--8,8 
+60,8 

TABLE 2. Recommended to Examination Relative to Eq. (i) Range 
of Values of R for Magnetic Conductor of a Charged Particle 
Accelerator [2]: Bil, 2 = 8.62, Bi3, ~ = 1.38, Po 0 = 19.07, p~ 
2.563477 (A~ = -9"10 -? ) 

R A~ R A2 R A2 

0,35 

0,'48 
1,55 

1,7 

0,14 

--0,30 
0,25 

~0,3  

2,75 

3,'0 
3,95 

4,20 

0,38 

--0,49 
0,52 

--0,43 

5,25 

5,5 
6,5 

6,'6 

0,15 

--0,62 
0,10 

--0,30 

~" ~)(~., Y)K(~, x) (9) o (x ,  Y ) = ~  ~ 
n=, S K~ (P,n, X) dX 

0 

where K(~n, X) = ~n cos ~n X + Bi 2 sin ~n X is the kernel of the finite integral transform 
with respect to the coordinate X, ~n are eigenvalues which are determined from Eq. (5), and 

(~, Y) = Po0F (~) L (~n, Y)/~, 
I 

F (~) = j" ~ (x) K (~n, x) dX, 
0 

L (~,  Y) = V (~,  Y) + Clnl (r) + C2n~ (r), 
v~ (~,  y) = W2 (V) + q, (~,  r), 

q) ( ~ ,  Y) - -  - -  exp ( - -  ~ ,  Y) S [ (Y) exp (2/~Y) dr, 

[ ( Y ) - - i "  d21V2(Y) exp(--I~,Y)dY, ( 1 0 )  
J dy2 

[ i i 1 CI = -~1 dTdy(O) Bi4g. (0) , C 2 -- dl dgdy(R) § Bia~ (R) , 

nl (Y) = (bt~ § Bia) exp ( - -  ~t,~Y) - -  (~= - -  Bia) exp [-- ~tn (2R - -  If)], 

n 2 (Y) = (la~ § Bia) exp [ -  ]z~ (R - -  Y)] § (/~ - -  Bir exp [ - -  ~ (R + Y)], 

m~ = e~p ( - -  2bt,~R), d = ~ (Bia § Bi~)(mn § 1) § ( ~  § Bi3Bi~)(m~ - -  1). 

S o l u t i o n  ( 9 )  t a k i n g  i n t o  a c c o u n t  a l l  o f  t h e  e x p r e s s i o n s  i n  E q s .  ( 1 0 )  i s  v a l i d  i f  t h e  
f u n c t i o n s  Wl(X) and  Wz(Y) a r e  c o n t i n u o u s .  From t h i s  c l a s s  o f  f u n c t i o n s  i t  i s  p o s s i b l e  t o  
find those harmonic functions which satisfy the conditions of the theorem: 

~}r I (X)  = ~i cos ~i x § Bi2 s i n  FiX, ( 11 ) 
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TABLE 3. Range of Values (R) Not Recommended for 
Practical Applications. Initial Data Are Cited in 
Table 2 

(R) A2 <R) As (R) As 

t,2 
1,3 

2,4 
2,6 

--16 
4,5 

--8,3 
1,8 

3,5 
3,7 

4,7 
5,0 

--2,7 
16 

--2,4 
3,2 

6,0 
6,3 

6,9 
7,5 

3,6 
1,5 

--1,1 
1,9 

TABLE 4. Distribution of e(X, Y), % for a Pressure 
Plate of a Turbo Generator. Initial Data Are from 
[2, 4]: Bi z = 0.8, Bi2 = 1.6, Bi3 = 0.4, Bi4 = 1.2; 
R = 7.5, Po(X, Y) = Po0exp(--NX) (i + MY + DY2); Po 0 
= 112, N = M = 0.0, D = --1.778.10 -2 (calculation 
per Eq. (16)). 

Y 
X 

0,0 0,25R 0,5R 0,75R R 

0,0 
0,25 
0,5 
0,75 
1,0 

2,56 
1,25 

--0,24 
--0,58 
--2,71 

1,75 
0,96 
0,04 

--1,27 
--1,77 

1,64 
0,90 
0,04 

---0, 11 
--1,68 

1,64 
0,87 
0,07 

--0,11 
--1,61 

--2,64 
--1,19 

0,23 
0,59 
2,56 

W 2 (Y) = ~ cos ~iY + Bi~ sin l~iY. (12) 

Then after substituting functions (ii) and (12) into solution (9) and recalling Eqs. (3)- 
(6) and all of Eqs. (i0) we obtain 

1 W~<y), ~ ( ~ , ,  y) 1 VC~(Y), C~=O, C~=O, ~(r) . . . .  y = - i  " 

On the basis of the orthogonal properties of the eigenfunctions (9), (Ii), (12) we find 

1 
O (X, Y) = 2---~.  2 Po 0 lJ~71 (X) ~ 2  (Y), 

which coincides with function (7). 

We shall now dwell on the proof of the following proposition: if the dimensionless tem- 
perature exactly satisfies Eq. (i), then it is found from the solution of Poisson's equation 
(8) and boundary conditions analogous to Eq. (4). 

As is evident from Eq. (i), the desired function is the product of two functions, each 
of which depends on one variable. Let there be some function 

O(X, Y ) =  ~ I ( X ) G ( Y ) ,  (13) 

which, on substitution into Poisson's equation (8), leads to the following form: 

Grr (14) ~l x x _~ _ _  _ _ _  2 t ,2  ' 

where U 2 is the separation parameter of the variables. 

It is obvious that each term on the left-hand-side of Eq. (14) is also a constant, i.e., 

~ x x  6 r r  
_~2, o (15) 

The solution of two ordinary second-order differential equations for third-order boun- 
dary conditions of the type of Eq. (4) have the form 

~(X) = ~cos~ iX+Bi~s in~ lX,  ~ (Y)= ~ i c o s ~ Y + B k s i n ~ y .  

Here ~i a r e  e i g e n v a l u e s  which a re  found from Eqs. (5)  and (6 ) .  

On the  o t h e r  hand, a cco rd i ng  to  Eq. ( 8 ) ,  (13), and (14) :  

O(X, Y) = 7 1 9  Poo~Vl (X) ]~2 (r),  
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but this is only possible when the function for the heat sources satisfies differential 
equation (3) and boundary conditions (4). 

We now turn our attention to satisfying condition (6). As is known, the solution of 
transcendental equation (5) has a set of roots ~i < ~2 < ~3 < -.. < ~i" Therefore each 
given value of R will correspond to definite values of ~i- In the opposite case, Eq. (i) 
is not satisfied. 

Thus, for exact fulfillment of the coupling relation between dimensionless (excess) 
temperatures in the fuel element (I), it is necessary and sufficient to satisfy conditions 
(2)-(8) and the theorem is proven. 

Discussion of the Results. In real cases Wm(X) and W2(Y) , as a rule, are rarely subject 
to the conditions of the theorem. This is because the nature of the origin of heat in fuel 
elements can be different: the liberation of Joule heat with the passage of electric current 
in normal conductors, heat losses from hysteresis and vortex currents in the magnetic cir- 
cuits in electric machines, heat liberated as a result of nuclear reactions in atomic reac- 
tors, etc. 

Therefore, it should be expected that Eq. (I) should be satisfied with some uncertainty 

8(X, Y) e(X, Y)--O(X, I/) 100% < (16) > 8 preset, O (X, Y) 
where @(X~ Y) is the dimensionless temperature, found from experiment or calculated from 
an exact solution; #(X, Y) is suitable for Eq. (i) or an approximate solution, if, for ex- 
ample, Eq. (9) is limited to one first term of the series. 

In practice, only fuel element variants are of interest when the maximum value of g(X, 
Y) < eoreset. They can be quickly verified according to [2] by the existence of rela- 
tion (~) from experimental excess surface temperatures of the fuel elements. However, this 
is related with the "sorting" of different fuel elements, i.e., for one of them the error 
will be g < epreset, and for the others e > epreset. Therefore, a problem arose in deter- 
mining the range of geometric dimensions of the fuel element of rectangular cross-section, 
for which the minimum error in reproducing the temperature field is expected according to 
Eq. (i). We shall denote the discrepancy between the left- and right-hand-sides of Eqs. (5), 
and (6) through A I and A2, respectively. Numerical calculations (Table i) established that 
for each Wiithere exists a discrete series of values of R, R l < R 2 < R 3 < ... Ri, for which 
A I, A 2 + 0. This enables one to choose in advance predetermined dimensions at the selection 
stage of a projected variant of a fuel element (Tables 2, 3) with subsequent experiment or 
numerical verifications of Eq. (i), which opens the possibility of obtaining reliable infor- 
mation about the thermal state, for example, of a pressure plate of a turbo generator [4] 
(Table 4). 

NOTATION 

X, Y are dimensionless coordinates, Po 0 is the Pomerantsev number, Bij (j = i, 2, 3, 4) 
is the Blot number. 

l* 
2. 

3. 

4. 
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